

Technical Data Sheet

Product Name: 1206 1209 3227 Red/Green Bi-Color SMD Chip LED

Part Number:	RD3227-82URYGC	
Customer PN:		
Version No.:	A.4	
Date:	July 24 th , 2015	
Cus	stomer Approva	l
Cuk	Stomer Approva	4
	1	

Shenzhen RigDoo Optoelectronics Co., Ltd.

E-mail: info@rigdoo.com Http://www.rigdoo.com

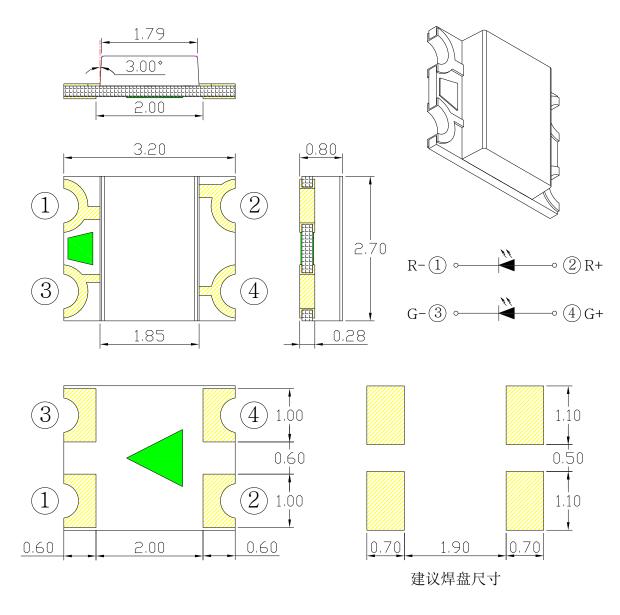
Rig	Doo Te	chnical	Data	Sheet	t			
P	Part No.: RD3227-82URYGC							
Version	A.4	Issued date	July 24 th , 2	015	Page	1 of 11		

1. Features

• Package (L/W/H): 3.2 x 2.7 x 0.8 mm

• Color: Ultra Bright Red/Yellowish Green Bi-Color

• Lens: Water Clear Flat Mold


EIA STD Package

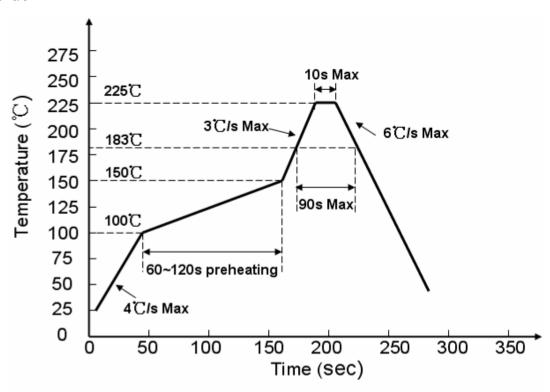
• Meet ROHS, Green Product

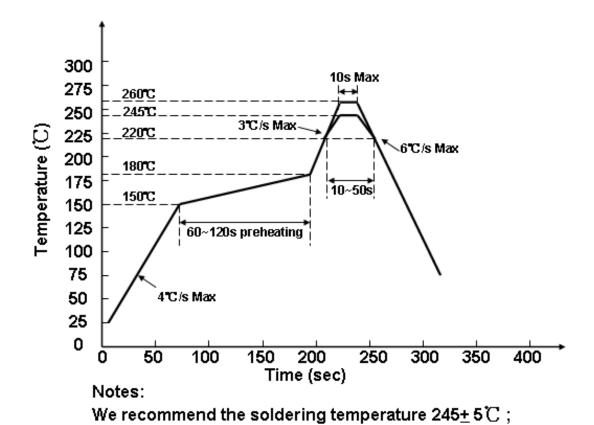
Compatible With SMT Automatic Equipment

• Compatible With Infrared Reflow Solder Process

2. Package Profile & Soldering PAD Suggested

Notes: a. All dimensions are in millimeters;


b. Tolerance is \pm 0.10 mm unless otherwise noted.


Ri	gDoo '	Technical	Data She	eet				
]	Part No.: RD3227-82URYGC							
Version	A.4	Issued date	July 24 th , 2015	Page	2 of 11			

3. Soldering Profile Suggested

For Lead Solder

For Lead Free Solder

\mathbf{R}^{i}	igDoo	Technical	Data Sh	eet					
	Part No.: RD3227-82URYGC								
Version	A.4	Issued date	July 24 th , 2015	Page	3 of 11				

4. Absolute Maximum Ratings At Ta=25℃

Parameter	Symbol	Rating		Unit	
Power Dissipation	Pd	UR	75	mW	
Power Dissipation	ru	YG	75	III VV	
Peak Forward Current	Ifp	UR	80	A	
(1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	YG	80	mA mA	
DC Forward Current	$ m I_F$	UR	25	mA	
DC Forward Current	IF	YG	25	IIIA	
Payarga Valtaga	VR	UR	5	V	
Reverse Voltage	V K	YG	5	V	
Operating Temperature Range	Topr	-30°C ~ +85°C			
Storage Temperature Range	Tstg	-40°C ~ +90°C			
Soldering Condition	Tsol	Reflow soldering: 260°C For 5 Seconds Hand soldering: 300°C For 3 Seconds			
Electrostatic Discharge	ESD	2000		V	

RigDoo Technical Data Sheet Part No.: RD3227-82URYGC

4 of 11

Version A.4 Issued date July 24th, 2015 Page

5. Electrical Optical Characteristics At Ta=25℃

Parameter	Symbol	Color	Min.	Тур.	Max.	Unit	Test Condition
Lyminaug Intensity	IV	UR		180		mad	IF = 20mA
Luminous Intensity	1 V	YG		95		mcd	IF – ZUMA
Dominant Wavelength	λd	UR	-620		-625-	nm	IF = 20mA
Dominant wavelength	λα	YG	568		572	11111	11' - 2011A
Dools Waxalanath	λр	UR		625		nm	IF = 20mA
Peak Wavelength		YG		570			
Chastral Lina Half Width	Δλ	UR		20		*****	IF = 20mA
Spectral Line Half-Width	$\Delta \lambda$	YG		35		nm	
Forward Voltage	VE	UR	1.8		2.6	V	IE — 20m A
Forward Voltage	VF	YG	1.8		2.6	V	IF = 20mA
Davarga Current	IR	UR			5	л А	VR=5V
Reverse Current	IK.	YG			5	uA	V K-3 V
Viewing Angle	201/2			120		deg	IF = 5mA

Notes: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λd is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

I	Rig	Doo	Te	chnical	Data	Sh	eet	
	P	art No. :	F	RD3227-82U	JRYGC			
Version		A.4		Issued date	July 24 th ,	2015	Page	5 of 11

6. Typical Electrical-Optical Characteristics Curves

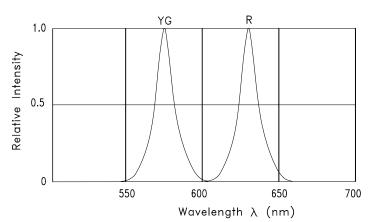
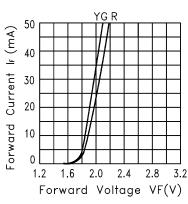



Fig.1 RELATIVE INTENSITY VS. WAVELENGTH

5 of 11

Fig.2 FORWARD CURRENT VS. FORWARD VOLTAGE

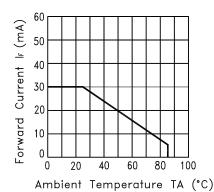


Fig.3 FORWARD CURRENT DERATING CURVE

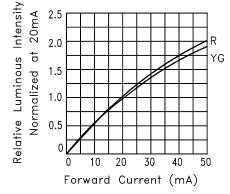


Fig.4 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

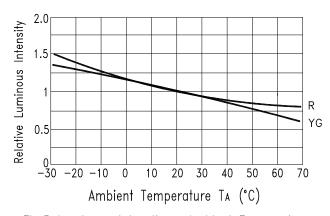


Fig.5 Luminous Intensity vs.Ambient Temperature

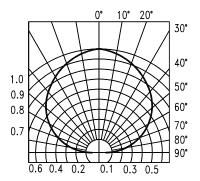


Fig.6 SPATIAL DISTRIBUTION

Technical RigDoo Data **Sheet**

Part No.: RD3227-82URYGC

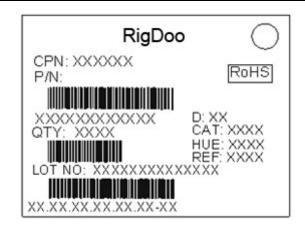
July 24th, 2015 Version A.4 Issued date

Page

7. Label explanation

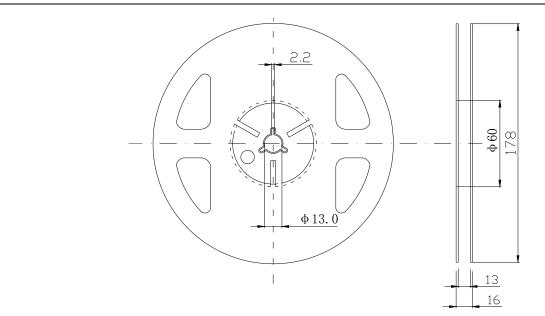
CAT: Luminous Intensity Rank (unit: mcd)

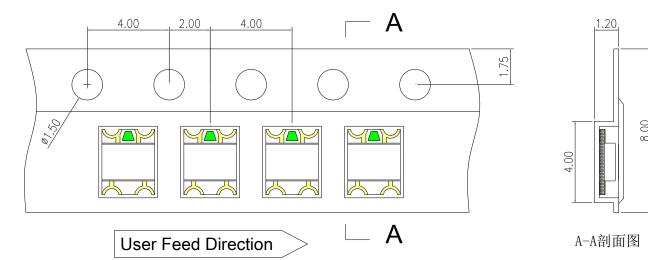
HUE: Dominant Wavelength Rank (unit:nm)


REF: Forward Voltage Rank (unit: V)

Rank Tolerance:

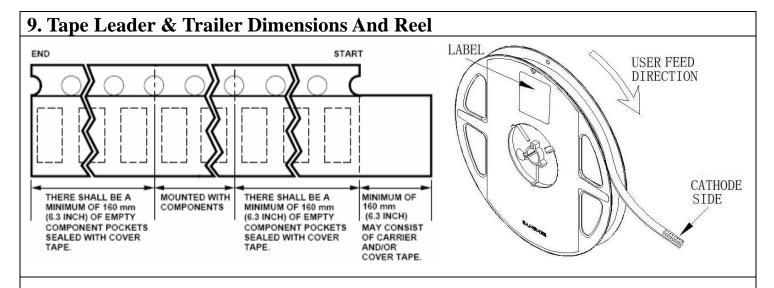
a. Luminous Intensity: ± 11%


b. $HUE: \pm 1nm$

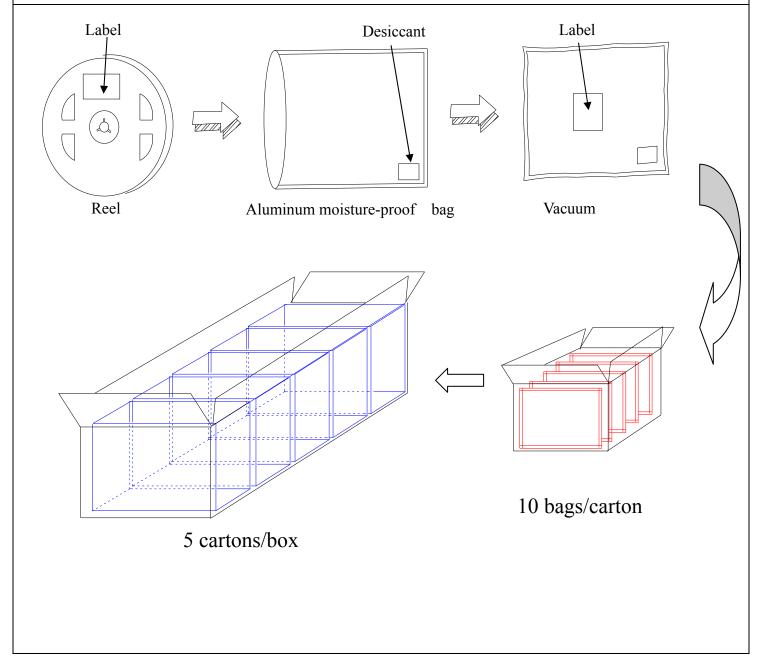

c. Forward Voltage: $\pm 0.02V$

6 of 11

8. Reel Dimensions:



Notes: a. All dimensions are in millimeters;


b. Tolerance is ± 0.10 mm unless otherwise noted.

Rig	Doo Te	echnical	Data Sh	eet				
P	Part No.: RD3227-82URYGC							
Version	A.4	Issued date	July 24th, 2015	Page	7 of 11			

10. Moisture Resistant Packaging:

RigDoo Technical Data Sheet

Part No.: RD3227-82URYGC

VersionA.4Issued dateJuly 24th, 2015Page8 of 11

11. Reliability Test

Classification	Test Item	Test Condition	Reference Standard	Reference Standard
	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating	1000HRS (-24HRS,+72HRS)*@20mA	MIL-STD-750D:1026 MIL-STD-883D:1005 JIS C 7021:B-1
Endurance	High Temperature, High Humidity Storage	IR-Reflow In-Board, 2 Times Ta= 85±5°C,RH= 85%	1000HRS±2HRS	JESD22-A101
Test	High Temperature Storage	Ta= 105±5°C	1000HRS (-24HRS,+72HRS)	MIL-STD-883D:1008 JIS C 7021:B-10
	Low Temperature Storage	Ta= -55±5℃	1000HRS (-24HRS,+72H RS)	JIS C 7021:B-12
Ther Sho	Temperature Cycling	$105^{\circ}\text{C} \sim 25^{\circ}\text{C} \sim -55^{\circ}\text{C} \sim 25^{\circ}\text{C}$ 30mins 5mins 30mins 5mins	10 Cycles	MIL-STD-202F:107D MIL-STD-750D:1051 MIL-STD-883D:1010 JIS C 7021:A-4
	Thermal Shock	IR-Reflow In-Board, 2 Times $85 \pm 5^{\circ} \text{C} \sim -40^{\circ} \text{C} \pm 5^{\circ} \text{C}$ 10 Cycles 10mins 10mins		MIL-STD-202F:107D MIL-STD-750D:1051 MIL-STD-883D:1011
	Solder Resistance	T.sol= 260 ± 5 °C	$10 \pm 1 \text{secs}$	MIL-STD-202F:210A MIL-STD-750D:2031 JIS C 7021:A-1
Environmental Test	IR-Reflow Normal Process	Ramp-up rate(183°C to Peak) +3°C/ second max Temp. maintain at 125(±25)°C 120 seconds max Temp. maintain above 183°C 60-150 seconds Peak temperature range 235°C+5/-0°C Time within 5°C of actual Peak Temperature (tp) 10-30 seconds Ramp-down rate +6°C/second max		MIL-STD-750D:2031. J-STD-020C
	IR-Reflow Pb Free Process	Ramp-up rate(217°C to Peak) +3°C/ second max Temp. maintain at 175(±25)°C 180 seconds max Temp. maintain above 217°C 60-150 seconds Peak temperature range 260°C+0/-5°C Time within 5°C of actual Peak Temperature (tp) 20-40 seconds Ramp-down rate +6°C/second max		MIL-STD-750D:2031.
	Solderability	T.sol= 235 ± 5 °C Immersion rate 25 ± 2.5 mm/sec Coverage $\geq 95\%$ of the dipped surface	Immersion time 2±0.5 sec	MIL-STD-202F:208D MIL-STD-750D:2026 MIL-STD-883D:2003 IEC 68 Part 2-20 JIS C 7021:A-2

12. Cautions

Rig	Doo To	echnical	Data	She	et	
Part No.: RD3227-82URYGC						
Version	A.4	Issued date	July 24 th ,	2015	Page	9 of 11

Storage

- 1.Before opening original package, it is recommended to store them in the following environment: Temperature: 5° C \sim 30 $^{\circ}$ C, Humidity: 85%RH max. When the inventory over 2months, Should be done before treatment using dehumidification, Temperature: 60° C/8 hours.
- 2. After opening original package, the storage ambient for the LEDs should be in 5~30°C temperature and 60% or less relative humidity.
- 3. In order to avoid moisture absorption, it is recommended that the LEDs that out of the original package should be stored in a sealed container with appropriate desiccant, or in desiccators with nitrogen ambient.
- 4. The LEDs should be used within 168hrs (7 days) after opening the package. Once been mounted, soldering should be quick.
- 5. If the moisture absorbent material (silica gel) has faded away or the LEDs stored out of original package for more than 168hrs (7 days), baking treatment should be performed using the conditions: 60°C at least 24 hours.

ESD (Electrostatic Discharge)-Protection

A LED (especially the Blue. White and Green product) is an ESD sensitive component, and static electricity or power surge will damage the LED. ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or "no light-up" at low currents, etc. Some advice as below should be noticed:

- 1. A conductive wrist strap or anti-electrostatic glove should be worn when handling these LEDs.
- 2. All devices, equipment, machinery, work tables and storage racks, etc. must be properly grounded (Grounding impedance value within 10Ω) .
- 3. Use anti-static package or boxes to carry and storage LEDs. And ordinary plastic package or boxes is forbidden to use.
- 4. Use ionizer to neutralize the static charge during handling or operating.
- 5. All surfaces and objects within 1 ft close to LEDs measure less than 100V.

Cleaning

Use alcohol-based cleaning solvents such as IPA (isopropyl alcohol) to clean LEDs if necessary.

Soldering

- 1. Soldering condition refer to the draft "Soldering Profile Suggested" on page 1.
- 2. Reflow soldering should not be done more than 2 times.
- 3. Manual soldering is only suggested on repair and rework. The maximum soldering temperature should not exceed 300°C within 3 sec. And the maximum capacity of soldering iron is 30W in power.
- 4. During the soldering process, do not touch the lens at high temperature.
- 5. After soldering, any mechanical force on the lens or any excessive vibration shall not be accepted to apply, also the circuit board shall not be bent as well.

Rig	Doo T	echnical	Data Sh	eet				
P	Part No.: RD3227-82URYGC							
Version	A.4	Issued date	July 24 th , 2015	Page	10 of 11			

Others

- 1. The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult RigDoo's Sales in advance for the applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health. (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).
- 2. The light output from the high luminous intensity LEDs may cause injury to human eyes when viewed directly.
- 3. The appearance and specifications of the product may be modified for improvement without prior notice.